Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 563
Filtrar
1.
medRxiv ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38605883

RESUMEN

Objective: The Krebs cycle enzyme Aconitate Decarboxylase 1 (ACOD1) mediates itaconate synthesis in myeloid cells.. Previously, we reported that administration of 4-octyl itaconate abrogated lupus phenotype in mice. Here, we explore the role of the endogenous ACOD1/itaconate pathway in the development of murine lupus as well as their relevance in premature cardiovascular damage in SLE. Methods: We characterized Acod1 protein expression in bone marrow-derived macrophages and human monocyte-derived macrophages, following a TLR7 agonist (imiquimod, IMQ). Wild type and Acod1-/- mice were exposed to topical IMQ for 5 weeks to induce an SLE phenotype and immune dysregulation was quantified. Itaconate serum levels were quantified in SLE patients and associated to cardiometabolic parameters and disease activity. Results: ACOD1 was induced in mouse bone marrow-derived macrophages (BMDM) and human monocyte-derived macrophages following in vitro TLR7 stimulation. This induction was partially dependent on type I Interferon receptor signaling and specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum anti-dsDNA and proinflammatory cytokine levels, enhanced kidney immune complex deposition and proteinuria, when compared to the IMQ-treated WT mice. Consistent with these results, Acod1-/- BMDM exposed to IMQ showed higher proinflammatory features in vitro. Itaconate levels were decreased in SLE serum compared to healthy control sera, in association with specific perturbed cardiometabolic parameters and subclinical vascular disease. Conclusion: These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in SLE, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.

2.
Small Methods ; : e2301215, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678536

RESUMEN

Tailoring a material's surface with hierarchical structures from the micro- to the nanoscale is key for fabricating highly sensitive detection platforms. To achieve this, the fabrication method should be simple, inexpensive, and yield materials with a high density of surface features. Here, using benchtop fabrication techniques, gold surfaces with hierarchically structured roughness are generated for sensing applications. Hierarchical gold electrodes are prepared on pre-stressed polystyrene substrates via electroless deposition and amperometric pulsing. Electrodes fabricated using 1 mm H[AuCl4] and roughened with 80 pulses revealed the highest electroactive surface area. These electrodes are used for enzyme-free detection of glucose in the presence of bovine serum albumin and achieved a limit of detection of 0.36 mm, below glucose concentrations in human blood. The surfaces nanoroughened with 100 pulses also showed excellent surface-enhanced Raman scattering (SERS) response for the detection of rhodamine 6G, with an enhancement factor of ≈2 × 106 compared to detection in solution, and for the detection of a self-assembled monolayer of thiophenol, with an enhancement factor of ≈30 compared to the response from microstructured gold surfaces. It is envisioned that the simplicity and low fabrication cost of these gold-roughened structures will expedite the development of electrochemical and SERS sensing devices.

3.
Nat Methods ; 21(5): 846-856, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658646

RESUMEN

CD4+ T cells recognize peptide antigens presented on class II major histocompatibility complex (MHC-II) molecules to carry out their function. The remarkable diversity of T cell receptor sequences and lack of antigen discovery approaches for MHC-II make profiling the specificities of CD4+ T cells challenging. We have expanded our platform of signaling and antigen-presenting bifunctional receptors to encode MHC-II molecules presenting covalently linked peptides (SABR-IIs) for CD4+ T cell antigen discovery. SABR-IIs can present epitopes to CD4+ T cells and induce signaling upon their recognition, allowing a readable output. Furthermore, the SABR-II design is modular in signaling and deployment to T cells and B cells. Here, we demonstrate that SABR-IIs libraries presenting endogenous and non-contiguous epitopes can be used for antigen discovery in the context of type 1 diabetes. SABR-II libraries provide a rapid, flexible, scalable and versatile approach for de novo identification of CD4+ T cell ligands from single-cell RNA sequencing data using experimental and computational approaches.


Asunto(s)
Linfocitos T CD4-Positivos , Epítopos de Linfocito T , Antígenos de Histocompatibilidad Clase II , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Animales , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/química , Ratones , Humanos , Diabetes Mellitus Tipo 1/inmunología , Péptidos/inmunología , Péptidos/química , Presentación de Antígeno/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Ratones Endogámicos NOD , Análisis de la Célula Individual/métodos
5.
Int J Phytoremediation ; : 1-8, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529629

RESUMEN

Many contaminated tailings throughout the world cause environmental and human-health related problems due to air and water drift. Tailing phytostabilization is a promising solution, but only certain plant species may tolerate and grow in these contaminated areas. We analyzed the chemical properties of a vegetated and unvegetated area in a tailing site in Central Chile. In addition, in the vegetated area we analyzed the metals content of roots, stems, and foliage in 41-years old plantations of Pinus radiata, Acacia dealbata, and Eucalyptus globulus (the only three species that survived from a total of 34 species planted), and determined height (H), and diameter at breast height (DBH). The results indicated that, except for pH, Se, Pb, and organic matter, all components (nutrients and metals) were two- to three- fold lower in the vegetated tailing compared to that of the unvegetated tailing. The analysis of plant tissues indicated that Cu was higher in the roots of P. radiata (2,073 mg kg-1) and lower in the stems of the same species (4.1 mg kg-1). However, the ability to take up and transport Cu to the shoots was higher in A. dealbata and lower in P. radiata (bioaccumulation factor of 0.19 and 0.06, respectively).


Here we present results for the first long-term phytostabilization project of copper mine tailings in Chile. From the 34 native and exotic species established in 1980 in a mine tailing disposal site with 1,000 mg Cu kg−1, only the exotic Pinus radiata, Acacia dealbata and Eucalyptus globulus were able to survive and adapt to the tailing conditions the last 41 years. This corroborates their potential for the future phytostabilization of copper mine wastes.

6.
Insects ; 15(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38535360

RESUMEN

Three-line hybrid rice is produced by crossing male sterile (A line) rice with a fertility-restorer (R line). Fertile lines (B lines) are also required to maintain A line seed for breeding programs. We used a range of hybrids and their parental lines to assess the frequency and nature of heterosis for resistance to the whitebacked planthopper (Sogatella furcifera), brown planthopper (Nilaparvata lugens) and yellow stemborer (Scirpophaga incertulas). Heterosis is defined as trait improvement above the average of the parental lines as a result of outbreeding. Based on the results from a greenhouse study that challenged hybrids and their parental lines with each herbivore species, we found that susceptibility to planthoppers was associated with one of the eight A lines tested, but resistance was improved by crossing with a relatively resistant restorer. Higher frequencies of heterosis for susceptibility in comparisons between hybrids and their B lines suggest that susceptibility was not related to the cytoplasmic genomes of the associated sterile A lines. Furthermore, because none of the parental lines possessed currently effective resistance genes, improved resistance against planthoppers was probably due to quantitative resistance. In a related field trial, hybrids had generally higher yields than their fertile parents and often produced larger grain; however, they were often more susceptible to stemborers, leaffolders (Cnaphalocrocis medinalis) and other caterpillars (Rivula atimeta). This was largely a consequence of hybrid heterosis for plant biomass and was strongly affected by crop duration. We make a series of recommendations to improve hybrid breeding to reduce the risks of herbivore damage.

8.
Front Cell Infect Microbiol ; 14: 1327299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343890

RESUMEN

In this study, two distinct in vitro infection models of Aspergillus fumigatus, using murine macrophages (RAW264.7) and human lung epithelial cells (A549), were employed to identify the genes important for fungal adaptation during infection. Transcriptomic analyses of co-incubated A. fumigatus uncovered 140 fungal genes up-regulated in common between both models that, when compared with a previously published in vivo transcriptomic study, allowed the identification of 13 genes consistently up-regulated in all three infection conditions. Among them, the maiA gene, responsible for a critical step in the L-phenylalanine degradation pathway, was identified. Disruption of maiA resulted in a mutant strain unable to complete the Phe degradation pathway, leading to an excessive production of pyomelanin when this amino acid served as the sole carbon source. Moreover, the disruption mutant exhibited noticeable cell wall abnormalities, with reduced levels of ß-glucans within the cell wall but did not show lack of chitin or mannans. The maiA-1 mutant strain induced reduced inflammation in primary macrophages and displayed significantly lower virulence in a neutropenic mouse model of infection. This is the first study linking the A. fumigatus maiA gene to fungal cell wall homeostasis and virulence.


Asunto(s)
Aspergillus fumigatus , Proteínas Fúngicas , Humanos , Animales , Ratones , Virulencia/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Homeostasis , Pared Celular/metabolismo
10.
Sports Med Int Open ; 8: a21876974, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38312927

RESUMEN

Brown adipose tissue (BAT) helps control body weight and is inversely correlated with body fat, but it is unclear whether it is subcutaneous adipose tissue (SAT) or visceral adipose tissue (VAT) that is related to BAT activation. The presented study aimed to verify the relation of SAT and VAT on BAT activation through infrared thermography (IRT) and cold stimulation in adult women. Forty women were evaluated in body composition and skin temperature (Tskin) acquisition by IRT. Student's independent t-test, Pearson's correlation, and two-way repeated measures ANOVA with Tukey post-hoc were applied. Women with low amounts of SAT and VAT had a significant increase in supraclavicular Tskin (SCVT). Medium negative degrees of linear variation were found before and after cold stimulation between SCVT, SAT and VAT. A significant effect of the moment factor and the group factor on the SCVT between subjects divided into the groups were pointed out. No difference was found in the relation between SAT, VAT, and BAT in adult women, pointing out that both types of fat are equally related. These results can help clinical practice understand clearly, through IRT, that the high accumulation of SAT and VAT can impair the activation of BAT and hinder the loss of weight in women.

11.
Adv Healthc Mater ; : e2303288, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349615

RESUMEN

Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.

12.
Chemphyschem ; 25(4): e202400056, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38350712

RESUMEN

The front cover artwork is provided by Prof. Jose Moran-Mirabal's group at McMaster University in Hamilton, Ontario, Canada. The image shows a 3D rendering and electron microscopy images of micro/nanostructured electrodes, fabricated through thermal shrinking of a shape memory polymer. Read the full text of the Review at 10.1002/cphc.202300535.

13.
Med Sci Sports Exerc ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38376997

RESUMEN

PURPOSE: To assess the influence of "super-shoes" on metabolic cost and joint mechanics in competitive female runners, and to understand how foot strike pattern may influence the footwear effects. METHODS: Eighteen competitive female runners ran four 5-minute bouts on a force instrumented treadmill at 12.9 km·h-1 in: 1) Nike Vaporfly Next% 2TM (SUPER) and 2) Nike Pegasus 38TM (CON) in a randomized and mirrored order. RESULTS: Metabolic power was improved by 4.2% (p < 0.001; d = 0.43) and MTP negative work (p < 0.001; d = 1.22), ankle negative work (p = 0.001; d = 0.67), and ankle positive work (p < 0.001; d = 0.97) were all smaller when running in SUPER compared to CON. There was no correlation between foot strike pattern and the between-shoe (CON to SUPER) percent change for metabolic power (r = 0.093, p = 0.715). CONCLUSIONS: Metabolic power improved by 4.2% in "super-shoes" (but only by ~3.2% if controlling for shoe mass differences) in this cohort of competitive female runners which is a smaller improvement than previously observed in men. The reduced mechanical demand at the MTP and ankle in "super-shoes" are consistent with previous literature and may explain or contribute to the metabolic improvements observed in "super-shoes", however foot strike pattern was not a moderating factor for the metabolic improvements of "super-shoes". Future studies should directly compare the metabolic response among different types of "super-shoes" between men and women.

14.
Diabetes Care ; 47(2): 295-303, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241499

RESUMEN

BACKGROUND: The optimal dose or type of physical activity to control glycosylated hemoglobin (HbA1c) in people with diabetes remains unknown. Current guidelines do not include consideration of baseline HbA1c for activity prescription. PURPOSE: To examine the dose-response relationship between physical activity and HbA1c (%) in individuals with type 2 diabetes. DATA SOURCES: A systematic search was performed in Embase, MEDLINE, Scopus, CINAHL, SPORTDiscus, and Web of Science. STUDY SELECTION: We included trials that involved participants diagnosed with type 2 diabetes that included any type of physical activity as intervention. DATA EXTRACTION: Pre- and postintervention HbA1c data, population and interventions characteristics, and descriptive statistics were collected to calculate change scores for each study arm. DATA SYNTHESIS: We used Bayesian random-effects meta-analyses to summarize high-quality evidence from 126 studies (6,718 participants). The optimal physical activity dose was 1,100 MET min/week, resulting in HbA1c reductions, ranging from -1.02% to -0.66% in severe uncontrolled diabetes, from -0.64% to -0.49% in uncontrolled diabetes, from -0.47% to -0.40% in controlled diabetes, and from -0.38% to -0.24% in prediabetes. LIMITATIONS: The time required to achieve these HbA1c reductions could not be estimated due to the heterogeneity between interventions' duration and protocols and the interpersonal variability of this outcome. CONCLUSIONS: The result of this meta-analysis provide key information about the optimal weekly dose of physical activity for people with diabetes with consideration of baseline HbA1c level, and the effectiveness of different types of active interventions. These results enable clinicians to prescribe tailored physical activity programs for this population.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Hemoglobina Glucada , Control Glucémico , Teorema de Bayes , Ejercicio Físico
15.
Adv Respir Med ; 92(1): 58-65, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38247552

RESUMEN

(1) Background: The breathing pattern is defined as the relationship between the tidal volume (VT) and breathing frequency (BF) for a given VE. The aim of this study was to evaluate whether inspiratory muscle training influenced the response of the breathing pattern during an incremental effort in amateur cyclists. (2) Methods: Eighteen amateur cyclists completed an incremental test to exhaustion, and a gas analysis on a cycle ergometer and spirometry were conducted. Cyclists were randomly assigned to two groups (IMTG = 9; CON = 9). The IMTG completed 6 weeks of inspiratory muscle training (IMT) using a PowerBreathe K3® device at 50% of the maximum inspiratory pressure (Pimax). The workload was adjusted weekly. The CON did not carry out any inspiratory training during the experimental period. After the 6-week intervention, the cyclists repeated the incremental exercise test, and the gas analysis and spirometry were conducted. The response of the breathing pattern was evaluated during the incremental exercise test. (3) Results: The Pimax increased in the IMTG (p < 0.05; d = 3.1; +19.62%). Variables related to the breathing pattern response showed no differences between groups after the intervention (EXPvsCON; p > 0.05). Likewise, no differences in breathing pattern were found in the IMTG after training (PREvsPOST; p > 0.05). (4) Conclusions: IMT improved the strength of inspiratory muscles and sport performance in amateur cyclists. These changes were not attributed to alterations in the response of the breathing pattern.


Asunto(s)
Ejercicio Físico , Modalidades de Fisioterapia , Humanos , Prueba de Esfuerzo , Músculos , Respiración
16.
Int Immunol ; 36(3): 111-128, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38066638

RESUMEN

Nurr1 is a member of the orphan nuclear receptor family NR4A (nuclear receptor subfamily 4 group A) that modulates inflammation in several cell lineages, both positively and negatively. Macrophages are key regulators of inflammatory responses, yet information about the role of Nurr1 in human macrophages is scarce. Here we examined Nurr1 expression and activity in steady state and activated human macrophages. Pro- and anti-inflammatory macrophages were generated in vitro by culture of blood monocytes with granulocyte/macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), respectively. Nurr1 expression was predominant in macrophages with the pro-inflammatory phenotype. Nurr1 activation with the agonists 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (C-DIM12) or isoxazolo-pyridinone 7e (IP7e) did not globally modify the polarization status of pro-inflammatory macrophages, but they decreased their production of TNF, IL-1ß, IL-6, IL-8, IL-12 p40, CCL2, IFN-ß, and reactive oxygen species, with variable potencies. Conversely, Nurr1 deficient macrophages increased the expression of transcripts encoding inflammatory mediators, particularly that of IL6, IFNB1, and CCL2. Mechanistically, endogenous Nurr1 interacted with NF-κB p65 in basal conditions and upon lipopolysaccharide (LPS)-mediated activation. C-DIM12 stabilized those complexes in cells exposed to LPS and concurrently decreased NF-κB transcriptional activity and p65 nuclear translocation. Expression of high levels of Nurr1 was associated with a subset of dermal macrophages that display enhanced levels of TNF and lower expression of the anti-inflammatory marker CD163L1 in skin lesions from patients with bullous pemphigoid (BP), a chronic inflammatory autoimmune blistering disorder. These results suggest that Nurr1 expression is linked with the pro-inflammatory phenotype of human macrophages, both in vivo and in vitro, where it may constitute a brake to attenuate the synthesis of inflammatory mediators.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , FN-kappa B , Humanos , FN-kappa B/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Antiinflamatorios/metabolismo
17.
Chemphyschem ; 25(4): e202300535, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38060839

RESUMEN

Since their discovery in the 1940s, shape memory polymers (SMPs) have been used in a broad spectrum of applications for research and industry.[1] SMPs can adopt a temporary shape and promptly return to their original form when submitted to an external stimulus. They have proven useful in fields such as wearable and stretchable electronics,[2] biomedicine,[3] and aerospace..[4] These materials are attractive and unique due to their ability to "remember" a shape after being submitted to elastic deformation. By combining the properties of SMPs with the advantages of electrochemistry, opportunities have emerged to develop structured sensing devices through simple and inexpensive fabrication approaches. The use of electrochemistry for signal transduction provides several advantages, including the translation into inexpensive sensing devices that are relatively easy to miniaturize, extremely low concentration requirements for detection, rapid sensing, and multiplexed detection. Thus, electrochemistry has been used in biosensing,[5] pollutant detection,[6] and pharmacological[7] applications, among others. To date, there is no review that summarizes the literature addressing the use of SMPs in the fabrication of structured electrodes for electrochemical sensing. This review aims to fill this gap by compiling the research that has been done on this topic over the last decade.

18.
Adv Pharmacol Pharm Sci ; 2023: 5555274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035129

RESUMEN

Background: Hypertension and type 2 diabetes (T2D) are the most prevalent noncommunicable diseases in Mexico and worldwide. According to international practice management guidelines, the principal chronic management therapy is daily oral medication. Aim: We aim to describe the trends of antihypertensive, antidiabetic, and nonsteroidal anti-inflammatory (NSAID) drugs use among the Mexican adult population from 2004-2018. Methods: We analyzed data from the Health Workers Cohort Study (HWCS) for males and females aged >18 years. We calculated the prevalence of chronic diseases and utilization for every kind of antihypertensive, antidiabetic, and NSAIDs (measured by self-reported utilization) at baseline and two follow-ups (2004, 2010, and 2017). Trends were analyzed using Fisher's exact test. Results: Hypertension prevalence increased from 19.8 to 30.3%, higher than T2D prevalence from 7.0 to 12.8% through fourteen years of follow-up. Like the self-reported dual therapy, the proportion of patients using beta-blockers and angiotensin II receptor blockers increased. Regarding T2D, the prevalence of metformin utilization increased to 83.9%. The utilization of common NSAIDs, mainly for muscular pain, remained around 13 to 16%. Conclusions: Our findings showed a changing prevalence of drug utilization for hypertension and T2D between 2004 and 2018 and consistent use of NSAIDs in the adult Mexican population.

19.
ACS Appl Mater Interfaces ; 15(47): 54234-54248, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37964517

RESUMEN

Extrusion three-dimensional (3D) bioprinting is a promising technology with many applications in the biomedical and tissue engineering fields. One of the key limitations for the widespread use of this technology is the narrow window of printability that results from the need to have bioinks with rheological properties that allow the extrusion of continuous filaments while maintaining high cell viability within the materials during and after printing. In this work, we use Carbopol (CBP) as rheology modifier for extrusion printing of biomaterials that are typically nonextrudable or present low printability. We show that low concentrations of CBP can introduce the desired rheological properties for a wide range of formulations, allowing the use of polymers with different cross-linking mechanisms and the introduction of additives and cells. To explore the opportunities and limitations of CBP as a rheology modifier, we used ink formulations based on poly(ethylene glycol)diacrylate with extrusion 3D printing to produce soft, yet stable, hydrogels with tunable mechanical properties. Cell-laden constructs made with such inks presented high viability for cells seeded on top of cross-linked materials and cells incorporated within the bioink during printing, showing that the materials are noncytotoxic and the printed structures do not degrade for up to 14 days. To our knowledge, this is the first report of the use of CBP-containing bioinks to 3D-print complex cell-laden structures that are stable for days and present high cell viability. The use of CBP to obtain highly printable inks can accelerate the evolution of extrusion 3D bioprinting by guaranteeing the required rheological properties and expanding the number of materials that can be successfully printed. This will allow researchers to develop and optimize new bioinks focusing on the biochemical, cellular, and mechanical requirements of the targeted applications rather than the rheology needed to achieve good printability.


Asunto(s)
Bioimpresión , Polímeros , Bioimpresión/métodos , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Reología , Hidrogeles/química , Tinta , Andamios del Tejido/química
20.
ACS Appl Mater Interfaces ; 15(47): 55183-55192, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37972391

RESUMEN

Paper has emerged as an excellent alternative to create environmentally benign disposable electrochemical sensing devices. The critical step to fabricating electrochemical sensors is making paper conductive. In this work, paper-based electrodes with a high electroactive surface area (ESA) were fabricated using a simple electroless deposition technique. The polymerization time of a polydopamine adhesion layer and the gold salt concentration during the electroless deposition step were optimized to obtain uniformly conductive paper-based electrodes. The optimization of these fabrication parameters was key to obtaining the highest ESA possible. Roughening factors (Rf) of 7.2 and 2.3 were obtained when cyclic voltammetry was done in sulfuric acid and potassium ferricyanide, respectively, demonstrating a surface prone to fast electron transfer. As a proof of concept, mercury detection was done through anodic stripping, achieving a limit of quantification (LOQ) of 0.9 ppb. By changing the metal deposition conditions, the roughness of the metalized papers could also be tuned for their use as surface-enhanced Raman scattering (SERS) sensors. Metallized papers with the highest SERS signal for thiophenol detection yielded a LOQ of 10 ppb. We anticipate that this method of fabricating nanostructured paper-based electrodes can accelerate the development of simple, cost-effective, and highly sensitive electrochemical and SERS sensing platforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...